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ABSTRACT

In this paper the progress made in producing predictions of the Normalized Difference Vegetation Index
(NDVI) over Kenya in the Greater Horn of Africa (GHA) for the October–December (OND) season is
discussed. Several studies have identified a statistically significant relationship between rainfall and NDVI
in the region. Predictability of seasonal rainfall by global climate models (GCMs) during the OND season
over the GHA has also been established as being among the best in the world. Information was extracted
from GCM seasonal prediction output using statistical transformations. The extracted information was then
used in the prediction of NDVI. NDVI is a key variable for management of various climate-sensitive
problems. For example, it has been shown to have the potential to predict environmental conditions
associated with Rift Valley Fever (RVF) viral activity and this is referred to throughout the paper as a
motivation for the study. RVF affects humans and livestock and is particularly economically important in
the GHA. The establishment of predictability for NDVI in this paper is therefore part of a methodology
that could ultimately generate information useful for managing RVF in livestock in the GHA. It has been
shown that NDVI can be predicted skillfully over the GHA with a 2–3-month lead time. Such information
is crucial for tailoring forecast information to support RVF monitoring and prediction over the region, as
well as many other potential applications (e.g., livestock forage estimation). More generally, the Famine
Early Warning System (FEWS), a project of the U.S. Agency for International Development (USAID) and
the National Aeronautics and Space Administration (NASA) and other specialized technical centers rou-
tinely use NDVI images to monitor environmental conditions worldwide. The high predictability for NDVI
established in this paper could therefore supplement the routine monitoring of environmental conditions for
a wide range of applications.
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1. Introduction

The initial motivation for the current investigation of
Normalized Difference Vegetation Index (NDVI) pre-
dictability is its potential for contributing to the stabi-
lization of the livestock trade between the Greater
Horn of Africa (GHA) and the Middle East. Cases of
Rift Valley Fever (RVF), a vector-borne disease, have
been reported in parts of Africa since the 1950s (Davies
et al. 1985; Swanepoel 1981). The disease was first iden-
tified in Kenya in 1931, when a target flock of exotic
sheep kept in the Rift Valley suffered severe losses.
The RVF virus is transmitted by mosquitoes of the ge-
nus Aedes, which breed in flooded low-lying habitats
known as dambos (Meegan and Bailey 1989). Dambo
depressions are common in many parts of Africa
(Davies et al. 1985). RVF causes epizootics (large-scale
transmission) in domestic animals and epidemics in hu-
man populations closely associated with infected ani-
mals. Outbreaks of RVF in recent years have been ac-
companied by bans on livestock trade between the
GHA and the Middle East. RVF outbreaks and trade
bans since the 1997/98 El Niño event have cost the
GHA $300–$500 million annually [Organization of Af-
rican Union/Inter-African Bureau of Animal Re-
sources (OAU/IBAR) 2003, personal communication).
Livestock accounts for a significant percentage of the
gross domestic product (GDP) in many GHA coun-
tries. RVF-related trade stoppages have had severely
detrimental impacts on livelihoods of many pastoralists.

Outbreaks of RVF in Africa are characterized by
distinct spatial and temporal patterns that are directly
related to specific environmental parameters associated
with mosquito vectors. Depending on their status, en-
vironmental variables such as vegetation, soil moisture,
and temperature, maintain endemic levels of the virus
and/or promote epizootic level of transmission (Linthi-
cum et al. 1990). The NDVI is a measure of vegetation
greenness and is a good proxy for rainfall and soil mois-
ture (Tucker 1979; Tucker et al. 1986).

RVF disease has been reported in Kenya at intervals
of 3–12 yr, mostly in the Eastern and Western Highland
plateau areas at the coast. Outbreaks were reported in
the years 1951–53, 1961–63, 1967/68, 1977–79, 1982/83,
and 1997/98 (Davies et al. 1985; Linthicum et al. 1999).
The most recent major outbreak during late 1997 to
early 1998 has been linked to the heavy and prolonged
rains associated with El Niño–Southern Oscillation
(ENSO; Trenberth 1998; Linthicum et al. 1999). Most
reported cases during this period were confined to the
semiarid zones in the north and northeast of Kenya,
similar to the 1961/62 episode.

Efforts have been made to monitor and forecast pos-

sible locations of RVF epizootics in order to undertake
surveillance and control measures in advance. Re-
motely sensed NDVI data have been used to monitor
RVF in restricted areas in Kenya where epizootics oc-
cur. Surveillance conducted within one ecological zone
in the country (Linthicum et al. 1990) concluded that
NDVI values of 0.43 and above corresponded to at
least short-term flooding of mosquito-breeding dambo
habitats. A synthetic aperture radar (SAR) instrument
that provides high-resolution and sensitive ground
moisture assessment was used to identify these mos-
quito-breeding habitats.

Various studies have reported on the relationship in
various parts of Africa between rainfall and NDVI
(Davenport and Nicholson 1993; Tucker et al. 1991;
Hielkema et al. 1986) and between NDVI and ENSO
(Anyamba and Eastman 1996; Verdin et al. 1999;
among others). The NDVI in the semiarid zones of
eastern Africa has been identified to have a good rela-
tionship with rainfall (Davenport and Nicholson 1993).
Moreover in these semiarid zones, the use of the NDVI
is optimized according to the advantages and shortcom-
ings of the rainfall data (Anyamba et al. 2002). Daven-
port and Nicholson (1993) showed strong similarity be-
tween temporal and spatial patterns of NDVI and rain-
fall when annual rainfall was below l000 mm and
monthly rainfall below 200 mm. In this range, the good
relationship of rainfall and NDVI was maintained for
interannual variability, as well as resolving the mean
annual cycle and spatial patterns. They further estab-
lished that the overall relation between NDVI and rain-
fall was log linear and the correlation between annually
integrated NDVI and the log of annual rainfall was
about 0.89. The best association on a monthly scale was
between December NDVI and the average of rainfall in
the concurrent (December) and the two previous
months (October and November). The higher correla-
tions with 3-month averages than individual month in-
dicates that NDVI is likely a better integrator of soil
moisture conditions than of rainfall alone.

Periods of RVF epizootic activity have correlated
with persistent and excessive rainfall, with an apparent
lag that allows 1–2 months of warning of the disease
through monitoring of rainfall trends (Davies et al.
1985). This relationship was observed at one study
site (1°12�S, 37°E) in Kenya. Linthicum et al. (1999)
used an Autoregressive Integrated Moving Average
(ARIMA) model to determine the best predictors of
RVF activity among various combinations of the South-
ern Oscillation index (SOI), equatorial Pacific and In-
dian Ocean sea surface temperatures (SSTs), and
NDVI. The best associations to the outbreak data were
achieved when equatorial Pacific and Indian Ocean
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SST and NDVI anomaly data were used in the model.
This approach could have been used to successfully pre-
dict each of the three RVF outbreaks that occurred
between 1982 and 1998 at a study site in Kenya. How-
ever, the approach of using multiple dependent vari-
ables, which are highly correlated, has a problem of
overfitting and poorly estimating the statistical models
and hence generating false skill.

In our approach to forecasting NDVI values, we use
a method based on empirical orthogonal function
(EOF) analysis that enables fields of highly correlated
data to be represented adequately by a small number of
uncorrelated fields, which account for much of the vari-
ance in the spatial and temporal variability of the origi-
nal data. Using the EOF predictor variables will sub-
stantially eliminate the problem of overfitting and allow
identification of more robust statistical models that can
be expected to perform comparably when applied to
historic data or in future real-time situations. We fur-
ther perform a cross validation to test the stability of
the constructed regression model. Cross validation en-
sures that observations from the forecast period do not
directly influence predictions while allowing for effi-
cient use of limited data (Stone 1974). The aim is for
these forecasting approaches to complement ongoing
monitoring activities. For example, the National Aero-
nautics and Space Administration (NASA) routinely
monitors the RVF episodes in Africa using the evolu-
tion of NDVI (Anyamba et al. 2003; more information
available online at http://www.geis.fhp.osd.mil/GEIS/
SurveillanceActivities/RVFWeb/infopages/updateRVF.
asp).

Seasonal climate forecasting is an emerging science
with the potential to inform decision makers of adverse
seasonal climates (e.g., drought, excess rainfall) months
prior to their actual occurrence. Forecast accuracy and
reliability vary according to geographic region, season,
and year and their usefulness is dependent on whether
or not the limited information they provide can be un-
derstood and used effectively for specific sectoral deci-
sions (Thomson et al. 2003). Improvements in the un-
derstanding of interactions between the atmosphere
and sea and land surfaces, advances in modeling the
global climate system, and substantial investment in
monitoring the tropical oceans now provide a degree of
predictability of climate fluctuations at a seasonal (i.e.,
a few months) lead time in many parts of the world,
especially in the Tropics (Latif et al. 1998; Goddard et
al. 2001). Climate predictability is highly dependent on
the extent to which the regional climate is determined
by SST patterns of the global, and particularly the tropi-
cal oceans.

In this study we use rainfall and circulation output

from a state-of-the-science global climate model
(GCM) driven with observed and predicted SST pat-
terns. The output of the model is used to predict NDVI.
We show that climate model output can be used to
skillfully predict NDVI in Kenya with a lead time of a
few months. NDVI is highly dependent on soil moisture
conditions that in turn, are dependent on rainfall and
other factors including soil type and elevation. The abil-
ity to predict atmospheric circulation patterns and as-
sociated rainfall with good skill over the region, and
“downscale” it into high-resolution NDVI information,
will build confidence in predictions of the patterns of
RVF risk a few months in advance. It will also provide
the basis for exploring the enhanced management of
other problems related to NDVI variations in the re-
gion.

2. Data

The GHA region exhibits three rainfall seasons of
March–May (MAM; long rains), June–August (JJA;
experienced over the northern parts of the subregion),
and October–December (OND; short rains). These
rainfall patterns are characterized by the north–south
movement of the intertropical convergence zone
(ITCZ), a zone of confluence of air currents from the
north and south over the African continent. This rain-
fall belt follows the position of the sun during the an-
nual cycle.

We selected the short rains season of OND for sev-
eral reasons: 1) it is predicted with better skill over
Kenya and the entire GHA compared to the other two
seasons, and is also highly related to ENSO (Ropelewski
and Halpert 1987; Ogallo et al. 1988; Farmer 1988;
Nicholson 1996; Indeje et al. 2000; Camberlin et al.
2001), and 2) rainfall reliability in this season is crucial
and more important to the communities living in the
arid and semiarid lands (ASALs) of Kenya (Fig. 1) who
mostly depend on livestock for subsistence. Vegetation
production is highly variable in this semiarid environ-
ment of Kenya due in part to its sensitivity to year-to-
year variability in the amount and timing of rainfall.
Figure 1 shows NDVI variability over Kenya, expressed
as the interannual standard deviation of the NDVI val-
ues. The map pattern shows areas of low variability of
NDVI (highlands), and high variability (ASALS). Suf-
ficiently high rainfall amounts observed over the high-
land areas of Kenya sustain vegetation cover by main-
taining soil moisture conditions, which results in low
NDVI variability over the region. Previous studies have
also indicated high (low) correlation between rainfall
and NDVI in the ASALS (highlands) areas of Kenya
(Davenport and Nicholson 1993). Davenport and
Nicholson (1993) postulated that as rainfall increases,
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NDVI increases until some threshold is reached and
then remains constant thereafter despite any further
increase in rainfall. We used the new updated and reca-
librated NDVI (version 3) dataset for Africa processed
by the Global Monitoring and Modeling Systems
(GIMMS) group at NASA’s Goddard Space Flight
Center (available online at http://islscp2.sesda.com/
ISLSCP2_1/html_pages/groups/veg/gimms_ndvi_
monthly_xdeg.html). The data have been derived from
measurements made by the Advanced Very High-
Resolution Radiometer (AVHRR) instrument on po-
lar-orbiting meteorological satellites operated by the
National Oceanic and Atmospheric Administration
(NOAA). NDVI is mapped on Albers equal-area pro-
jection and has been calibrated for intrasensor differ-
ences and intrasensor degradation. The data have been
corrected for El Chichón and Mt. Pinatubo volcanic
events to remove bias associated with volcanic aerosol
contamination. Spatial and temporal correction has
been applied to the data to remove cloud pixels, which
is then updated in the historical archives by the U.S.
Geological Survey (USGS). The new NASA Global
Inventory Modeling and Mapping Studies (GIMMS)
operational data have a greater maximum NDVI value
of 0.90 versus 0.75 for the predecessor dataset. The
temporal range of the NDVI data we used is from Janu-
ary 1982 to December 1998. Monthly data series were
derived from the 10-day data by maximum value com-
positing (Holben 1986), and then interpolated from
8-km pixel resolution to a 25-km grid. Bicubic (Matlab

interpolation function) was used in transforming NDVI
from 8 to 25 km. The scheme generates each target grid
by interpolation from the nearest 16 mapped source
grid boxes. The algorithm performance has been
proved to be quite satisfactory for computer execution
time and memory usage. It also yields a good balance
between accuracy in detail preservation and smooth-
ness. The 25-km grid spacing was chosen in order to
avoid overloading the processing software while at the
same time retaining a resolution capable of describing
NDVI variability in the region of interest.

Monthly averages were calculated from the NDVI
time series for the 25-km grid boxes coinciding with
locations over eastern Kenya where RVF cases have
been reported. A total of 40 grid boxes were used in the
averaging. December NDVI is used to infer the effect
of OND rainfall on the vegetation development over
the region. There are several cases of RVF reports in
the GHA that coincided with the OND rainfall season
with some cases reported in the following year. This
analysis of end-of-year NDVI values could provide evi-
dence on expected reports of RVF cases in the same
year or early in the following year. Linthicum et al.
(1999) reported elevated NDVI anomalies over East
Africa starting in October 1997 (the start of the normal
short rainy period) and extending to April 1998
(through the normal dry season of January and Febru-
ary), which were significantly correlated with RVF ac-
tivity. Likewise, investigation of NDVI images of
Kenya for OND 1982–84 (Linthicum et al. 1987),
showed intense green vegetation in the December 1982
in the central portion of Kenya that was substantially
higher than the corresponding period in the two subse-
quent years. RVF disease was also reported in the
country during this period (OND 1982–84). Locations
of RVF epizootics and NDVI values for December
1982 and 1997 are shown in Fig. 2. The figure also
shows the location near Nairobi where long records of
RVF epizootics exist (Davies et al. 1985; Linthicum et
al. 1999) and where the 0.43 NDVI threshhold was
identified. The NDVI resolution at 25-km grid spacing
(a total of 40 by 40 grid points) was used in this figure.
High values of NDVI were observed during this period
over the ASALS and parts of the highland areas of
Kenya. Interestingly, the NDVI values over the highlands
where there were RVF outbreaks are higher than in the
surrounding ones. Similar observations are reported in
Linthicum et al. (1987), with the inference that NDVI is
an indicator of areas of potential RVF outbreaks.

3. Methods

An investigation into predictability is conducted in
order to establish the degree to which GCM output can

FIG. 1. NDVI variability (1982–98) for December over Kenya.
NDVI variability values (shaded) are dimensionless. Contours are
elevation in meters. ASALS receive below 500 mm of rainfall
yr�1. Highland areas receive more that 2000 mm yr�1.
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identify NDVI conditions in advance. Statistical trans-
formation of GCM output is necessary to correct sys-
tematic biases between the real world and its modeled
presentation. Such an approach could be utilized to
construct relationships between the desired forecast
quantity such as NDVI- and GCM-simulated variables
such as precipitation, large-scale circulation, etc. In the
current study, NDVI data are forecast using their sta-
tistical association with GCM-predicted rainfall and cir-

culation variables. Climate forecast fields are provided
from the ECHAM v4.5 (Roeckner et al. 1996) GCM.
We used output from simulations utilized by the Inter-
national Research Institute for Climate and Society
(see online at http://iri.columbia.edu/) as input to their
operational seasonal forecasts. We analyzed the mean
of an ensemble of 24 GCM integrations, each run with
different initial atmospheric conditions but the same
SST boundary conditions, over the 17-yr period (1982–
98). The method is repeated by using GCM forecasts
made from persisted SST anomaly conditions. In the
latter case, the GCM is forced by the September SST
anomaly conditions that are then persisted through the
forecast period (until the end of December). The per-
sisted SST GCM forecasts enable a 0-month lead time
for OND seasonal rainfall and a 2–3-month lead time in
December NDVI forecast. The GCM nonlinearly
transforms SST information from around the globe to
produce a dynamic solution of atmospheric variables
over a given region.

One of the shortcomings of the GCM is the coarse
resolution of about 280 km that is used. The use of the
coarse resolution in the GCM, or other approximations
contained in the model equations, could often result in
systematic shifts in the location of spatial rainfall pat-
terns to an extent of reducing the overall prediction
skill. We therefore apply a correction to the GCM out-
put using the model output statistics (MOS) approach.
The MOS concept, widely used in weather forecasting,
objectively interprets numerical model output and pro-
duces site-specific forecast guidance (Wilks 1995). The
MOS method involves matching observed data such as
station seasonal precipitation or NDVI with output
from numerical model predictions. Forecast equations
for a specific region (location) are then derived by sta-
tistical techniques including various forms of regres-
sion. In this way the bias and spatial inaccuracy of the
numerical model, as well as the local climatology, are
built into the forecast system. When transforming to a
variable such as NDVI, the MOS approach also implic-
itly represents physical processes that connect the
GCM output variable (such as rainfall) to the target
variable (such as NDVI). Analysis of GCM circulations
patterns (figure not shown) indicates that low-level
(700 hPa) zonal wind correlates significantly with rain-
fall over Kenya. The skill obtained from GCM circula-
tion indices is however lower than that of GCM pre-
cipitation. Statistical methods have previously been
used to relate GCM output to finer scales suitable for
applications (Wilby et al. 2002; Landman and Goddard
2002; Hansen and Indeje 2004). For seasonal predic-
tions, the three commonly used methods (that are
methodologically related) are EOF, singular value de-

FIG. 2. NDVI values for December (a) 1982 and (b) 1997. Filled
triangles are locations where RVF cases were reported. The
square box is the location near Nairobi with a long record of RVF
epizootics (Davies et al. 1985; Linthicum et al. 1999). A suggestion
of an environmental threshold for RVF of 0.43 NDVI was based
on this one location.
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composition (SVD), and canonical correlation analysis
(CCA). EOF analysis enables fields of highly corre-
lated data to be represented adequately by a small
number of orthogonal functions and corresponding or-
thogonal time coefficients, which account for much of
the variance in their spatial and temporal variability
(Kutzbach 1967; Kidson and Thompson 1998). Each
principal component (PC) pattern represents a predic-
tor field with spatial coherence, but in a way that effi-
ciently deals with the risk of overfitting the empirical
model. The SVD method decomposes a cross-
covariance matrix of simulated and observed fields into
singular vectors and expansion coefficients. Details of
this method and its application to geophysical data
analysis are discussed in Feddersen et al. (1999). CCA
is a multivariate statistical technique that calculates lin-
ear combinations of a set of predictors that maximizes
least square relationships to similarly calculated linear
combinations of a set of predictands. A limited number
of leading principal components of the covariance or
correlation matrix that represent sufficient percentage
of the variance from the original datasets are retained
to further the analysis. CCA can also be viewed as a
special form of EOF analysis where the correlation
structure between predictor and predictand datasets is
described more completely with each successive ca-
nonical mode (Graham et al. 1994). The CCA statistical
technique was used in this study to relate GCM pre-
cipitation and 700-hPa zonal wind predictor to NDVI
predictand fields. The SVD technique was tried and
gave similar results as those obtained by using the CCA
method. The CCA time series obtained from the sta-
tistical decomposition of the GCM fields are related to
NDVI using multiple regression. The most recom-
mended multilinear regression approach when a rela-
tively long time series is available is to build the model
using an independent dataset (the training set) and use
the remaining sample in model verification. However,
for short length time series (17 yr in our case), model
performance is validated using a jackknife or cross-
validation technique in which data from one (or more)
point(s) in time are systematically withheld from the
dataset. A specification model is then derived from the
remaining part of the dataset, and the specification is
tested on the withheld data. The computational draw-
back of this method is that instead of performing the
model construction only once, we have to repeat it as
each year is withheld (Feddersen et al. 1999). The mul-
tiple linear regression models were trained with the
time series of the leading modes through stepwise
screening calibration (Wilks 1995; Kidson and Thomp-
son 1998), in which the contribution of each predictor
was evaluated through a cross-validation analysis. Only

those that contributed to the cross-validation skill were
included in the predictor dataset. This approach re-
duces the risk of overfitting the models and simulta-
neously extracts as much useful information as possible
from the predictor data (Feddersen et al. 1999).

4. Results

The variables that we analyze in our model include
NDVI (predictand) and a combined GCM precipitation
and 700-hPa zonal wind (predictor). We performed
EOF analysis on the combined GCM rainfall and 700-
hPa zonal wind for the period of 1982–98 (17 yr). The
EOF analysis was performed on a covariance matrix (of
a combined GCM precipitation and 700-hPa zonal
wind) with each anomaly field standardized. The result-
ing standardized values were dimensionless with a zero
mean and unit standard deviation. The GCM domain
(10°S–10°N, 10°–60°E) was chosen as to include the
known regional climate forcing mechanisms from the
Indian Ocean and the Congo tropical forest. The EOF
method can be sensitive to changes in domain size.
Analyses were performed on various domain sizes be-
fore settling on the one that we used. The first four
principal component (PC1–PC4) time series for the
GCM’s OND combined precipitation and 700-hPa
zonal wind are shown in Fig. 3. The first four modes
explain 32.8%, 18.3%, 11.6%, and 8.4% of the variance,
respectively—a total of 71.1%. PC1 shows two major
peaks in 1982 and 1997, which were the major El Niño
years during the study period. PC3 indicate positive
peaks during 1982/83, 1988, and 1991–93 and negative
peaks during 1984–87, 1989, 1994–98. Years 1982/83,
1991/92, and 1987/88 were associated with El Niños and
1984/85 and 1995/96 with La Niñas. A feature of PC2 is
a strong positive loading in 1985 followed by a rela-
tively strong negative loading in 1986. PC4 indicates a
positive trend with negative indices in 1980s turning to
positive from 1990. Recent studies by Schreck and Se-
mazzi (2004) have identified a similar time series in the
East African rainfall variability and have associated it
with a global warming trend.

Correlation between NDVI and the PC1–PC4 time
series are shown in Fig. 4. Areas of substantial corre-
lation indicate where each of the PCs has predictive
power for the NDVI values. Strongest predictive po-
tential is found for PC1. High positive correlations
(�0.6) with PC1 are shown over northern Kenya, parts
of the coastal strip, and the southern parts of the coun-
try, decreasing toward the highland areas. The spatial
variations in skill may reflect variations in climate pre-
dictability or climate–NDVI coupling over the region.
This hypothesis could be investigated further using a
high-resolution regional climate model coupled with
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station observation data. The subsequent three PCs
each show some additional predictive potential. The
second PC time series correlates moderately over
northern Tanzania. The third PC time series shows
moderate correlations over the highland areas, and the
southern and coastal strip of Kenya. The PC4 correla-
tion map includes an indication of predictability over
the extreme southwest of the domain.

a. Linkage to large-scale SST forcing

The correlation between the PC1 time series and SST
is high (�0.4, significant at the 90% level) over the
western Indian Ocean and eastern Pacific Ocean (Fig.
5a). This suggests that a tropical Pacific ENSO effect,
combined with Indian Ocean forcing, is contributing to
high NDVI predictability over Kenya through telecon-
nection linkages. An east–west gradient is also evident
over the Indian Ocean with positive correlations (�0.4)
to the west and negative correlations (��0.4) in the
central and eastern parts of the basin. The 1997/98 West
Indian Ocean warming during the El Niño of that pe-
riod could dominate this pattern. However, analysis ob-
tained by omitting 1997 and 1982 in the predictor field
through ranked correlation analysis (figure not shown),
yielded similar but slightly weaker correlation patterns

over the eastern Pacific and western Indian Ocean. The
remote forcing of the regional climate is through shifts
in the Walker circulation and regionally through warm
western Indian Ocean SSTs enhancing near-surface
moisture that is transported inland by an easterly wind
regime. The advected moisture interacts with the local
orography to result in rainfall and corresponding NDVI
patterns (Anyamba et al. 2002).

The PC2 time series and SST correlation indicates
high positive values (�0.3) to the southern tip of the
African continent, and the equatorial and parts of the
northern Atlantic (Fig. 5b). This pattern is hypoth-
esized to explain part of the ITCZ’s variability and lo-
cation that is controlled by the north–south pressure
gradients that are in turn modulated by surface SST
conditions. For instance, warming in the southern In-
dian and Atlantic Oceans would diffuse the semiper-
manent Mascarene and St. Helena high pressure cells,
restricting the ITCZ to south of the equator, affecting
variability in northern Tanzania. High positive correla-
tion is also indicated over the equatorial and the north-
ern Atlantic Ocean with PC4 (Fig. 5d). The PC4 time
series matches a positive trend in the NDVI in northern
Tanzania. Correlation between GCM precipitation
simulation PC3 and SST shows negative values in the

FIG. 3. First four PC time series of OND GCM simulations of precipitation and circulation over 10°S–10°N,
10°–60°E.
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tropical Atlantic Ocean, and pockets of positive values
over the Indian Ocean and also negative values over
the western Pacific Ocean (Fig. 5c). High negative cor-
relations are also observed over the location of high
pressure cells that modulate regional climate and
weather, namely, the Azores (North Atlantic), Mas-
carene (south Indian Ocean), and St. Helena (South
Atlantic Ocean). Reduction in pressures over these re-
gions would restrict the ITCZ to the south and west of
Kenya. This third pattern could also be related to the
“dipole” between Madagascar and the southwest part
of the Indian Basin. Figure 4 shows high skill between
this mode and NDVI over the western and coastal areas
of Kenya. Warming over the equatorial Atlantic Ocean
has also been associated with frequent westerly waves
across the equatorial African continent that penetrate
as far as western Kenya, modulating weather and cli-
mate over these regions (Mutai and Ward 2000).

In summary, the second, third, and fourth modes of
the GCM precipitation simulations are related to the

impact of the adjacent oceans on the climate over
Kenya, whereas the first mode describes the large-scale
ENSO teleconnections.

b. Skill of NDVI predictions from GCM hindcasts

Figure 6 shows the simultaneous correlation between
observed NDVI and cross-validated predictor fields for
the OND season. The contribution of each month is
significant in the overall seasonal (OND) correlation.
November contributes about 40% of the seasonal rain-
fall with October and December contributing about
30% each. The substantial contribution of each month
to the seasonal total, and the known similarity of
monthly teleconnections with SST and the large-scale
atmosphere, justify including the three months in the
analysis. The CCA method draws on the first four EOF
modes, which explain about 71% of the total variance.
The correlation pattern shown in Fig. 6 indicates high
skill (substantial areas with correlation values �0.6)
mapped over the northern, eastern, and southern parts

FIG. 4. Correlation between NDVI and the first four PC time series of OND GCM precipitation and circulation
(GCM forced by observed SSTs): (a) PC1, (b) PC2, (c) PC3, and (d) PC4. Contours are elevation in meters.
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FIG. 5. Correlation between PC time series of OND GCM precipitation and circulation
and SSTAs: (a) PC1, (b) PC2, (c) PC3, and (d) PC4.
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of Kenya. Low skill is shown over the highland areas of
the country. There is high predictive skill for NDVI
over ASALS of Kenya, which are mainly occupied by
the pastoralists and these are areas where livestock for
export are reared. Timely prediction of NDVI in these
areas would benefit the local community in the man-
agement of fodder, which is dependent on variability in
green biomass. NDVI time series averaged over eastern
parts of Kenya (0.5°–3°N, 38.5°–39.5°E) and cross-
validated CCA1 time series for OND GCM precipita-
tion are shown in Fig. 7 (several grid pixels for October
and November 1994 were missing). The CCA1 time
series is capable of replicating the NDVI with a high
correlation skill of 0.82 (significant at the 99% level).
The GCM is able to predict high NDVI values for the
years 1982 and 1997 that were associated with the RVF
outbreaks in the country. Predictions of the NDVI
should not be expected to be perfect for a number of
reasons. The climate prediction is probabilistic, and it
will always be the case that in some years, the outcome
is in the outlying wings of the distribution of those pos-
sible given the prevailing SST conditions. It is also the
case that the GCM itself is an approximation, and may
sometimes misrepresent the effects of SST on the re-
gional climate. A further candidate for errors in the
predictions is possible observational error on the NDVI
values. Thus, the opposite sign in the predictor and
predictand time series during 1993 could be attributed
to any of the above sources of error. However, despite
the possible sources of inaccuracy, most years are well

represented, indicating a fairly robust cascade of pre-
dictive information from global SST fields into regional
climate patterns and subsequently into the greenness of
vegetation. The good skill is not solely confined to the
periods when the strongest El Niño conditions pre-
vailed (1982/1997), notably also including the years
1983, 1984, 1995, and 1996.

Figure 8 shows the spatial correlation between the
cross-validated OND CCA1 predictor and the observed
December predictand field. A visual check shows most

FIG. 8. Correlation between observed December NDVI (pre-
dictand) and cross-validated first canonical time series of OND
GCM precipitation and circulation (predictor). Contours are el-
evation in meters.

FIG. 6. Simultaneous correlation between observed OND
NDVI (predictand) and OND cross-validated first canonical
GCM precipitation and circulation (predictor) time series. Con-
tours are elevation in meters.

FIG. 7. Time series of observed OND NDVI (predictand) av-
eraged over eastern Kenya and cross-validated first canonical
(predictor) time series of OND GCM precipitation and circula-
tion. Correlation coefficient r � 0.83.
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of the grid points in the domain with a correlation co-
efficient greater that 0.4 (significant at the 90% level).
Figure 8 shows increased correlation skill for December
NDVI compared with that shown in Fig. 6, which im-
plies that we can use seasonal GCM information to
predict the vegetation conditions that will prevail at the
end of the OND rainfall season. There is high correla-
tion skill (�0.6, significant at the 99% level) over most
parts of Kenya, decreasing over the highlands areas.
The low skill over the highland areas could be linked to
low NDVI variability (Fig. 1), which is consistent with
generally abundant rainfall patterns over these areas.
In contrast, time series of the December NDVI aver-
aged over eastern Kenya and cross-validated predictor
time series (Fig. 9) indicates particularly high predic-
tion skill for these areas (correlation coefficient r �
0.83, significant at the 99% level).

c. Skill of NDVI predictions from GCM forecasts

The previous section establishes the basis for predict-
ing NDVI, given observed SST conditions. Advances in
capacity for operational prediction of NDVI are dem-
onstrated in this section. The aim is to demonstrate the
ability to predict NDVI in real time based on the GCM
model output. Here we use GCM output obtained by
forcing the model using persisted SST anomalies. The
SST anomaly conditions for September are used to
force the GCM though to the end of the season (i.e.,
OND). Skill levels of ECHAM GCM rainfall forecasts
for different seasons and locations over the GHA re-
gion are shown by the IRI (see online at http://
iri.columbia.edu). Skill in predicting December values

of the NDVI in East Africa using output from the
ECHAM4.5 GCM is shown in Fig. 10a. Areas of skill
�0.5 are widespread with some pockets �0.7. Figure
10b gives a graphical presentation of the accuracy of the
forecasts: time series of the predicted and observed
NDVI for an area average across eastern Kenya (cor-
relation � 0.76, significant at the 99% level). Predic-
tions are made using large-scale GCM fields of rainfall
and low-level winds. The GCM experiments are based
on persisted September SST information, so the fore-
cast information would be available in early October. A

FIG. 10. Predicting December values of the NDVI in Kenya
using output from the GCM. The GCM uses September SSTAs so
real-time forecasts from this system would be available in early
October. (a) Correlation between cross-validated prediction and
observed NDVI. Contours show land elevation in meters. (b)
Time series of the predicted and observed NDVI for an area
average across eastern Kenya (Correlation � 0.76).

FIG. 9. Cross-validated time series of observed December
NDVI (predictand) averaged over eastern Kenya and first canoni-
cal (predictor) time series of OND GCM precipitation and circu-
lation. Correlation coefficient r � 0.83.

1 MAY 2006 I N D E J E E T A L . 1683

Fig 9 live 4/C Fig 10 live 4/C



total of four PCs are used and each of predictors is
evaluated through cross validation. The figure shows
skillful correlations (�0.6) over the ASALS covering
the northeastern, eastern, and southern Kenya. Thus, a
skillful forecast is obtained 2–3 months in advance for
the end of season (December) NDVI conditions.

Figure 11 provides a broader summary, showing skill
levels obtained by using cross-validated persisted SST
(psst) and observed SST (osst) GCM predictor and ob-
served NDVI predictand at simultaneous and lagged
times. The figure shows the percentage number of grid
points (within the domain enclosed by Kenya, 5°S–5°N,
33°–43°E) exceeding given thresholds of correlation
values. The best overall skill is shown between the
OND predictor and the December predictand for the
GCM forced by observed SST. Only a modest drop in
the correlation skill values is shown when using per-
sisted SST to force the GCM, which implies that we
could predict NDVI with a lead time of 2–3 months
over Kenya with considerable skill. Goddard and Ma-
son (2002) have indicated that the use of forecast SST
to force the GCM improves on the rainfall skill over
that obtained by using persisted SST to force the GCM,
so the persisted skill results in this paper can be viewed
as a conservative estimate of that currently achievable
in real time.

Initial analysis of different lag predictor series for
NDVI during the OND season showed the best rela-
tionships at one month prior to the target season. Dav-
enport and Nicholson (1993) showed similar results on
their analysis of rainfall and NDVI over the same re-
gion.

5. Discussion

NDVI, a measure of vegetation greenness, is often
highly climate dependent. Rainfall amount coupled
with types of soils that have high capacity of retaining
moisture create suitable conditions for high NDVI val-
ues. NDVI also increases in low-lying dambo areas
when they are flooded for about 60 days (Davies et al.
1985). This fast growth of NDVI values in dambo areas
due to the availability of water in these depressions
provides suitable conditions for mosquito breeding.
Animals are attracted to these areas for fodder and
water sources making them highly exposed to mosquito
bites that can result in RVF epizootics. Our study has
shown that NDVI can be predicted skillfully over
Kenya with a lead time of 2–3 months. Such forecasts of
NDVI are thus a potential input to an RVF forecast
model.

The physics and dynamics of the MOS predictors are
related to the large-scale climatic forcing derived from
the air–sea interactions. The first GCM precipitation
PC time series is significantly correlated with SST over
tropical areas of the western Indian Ocean and eastern
Pacific Ocean, which indicate ENSO coupling through
local and remote teleconnections. The second, third,
and fourth GCM rainfall PC time series are related to
the local ITCZ variability that is controlled by regional
pressure gradients modulated by SST conditions in the
neighboring oceans. GCM forecasts of precipitation
and circulation fields show, in turn, good skill as pre-
dictors for NDVI over most parts of Kenya, with a
notable exception in the highland areas. Variation in
skill may also be related to variations in NDVI sensi-
tivity to climate, or to spatial variations in climate pre-
dictability, or to sampling noise. Research is needed to
better understand the skill variations, to give more con-
fidence in the detailed spatial output of experimental
forecast systems. Indeed, the spatial variations of skill
in NDVI over some parts of Kenya require careful di-
agnostic analysis of the high-resolution climate and its
interaction with the land surface. The use of regional
models with high resolution capable of resolving the
diverse topographic features over the GHA may pro-
vide better understanding of the physical mechanisms
responsible for the low NDVI forecast skill over some
parts of Kenya, and particularly high levels in other
parts. Previous regional model studies have already
provided better understanding of local climatic features
over the region (Sun et al. 1999; Indeje et al. 2001).

In many geographic locations around the world,
there is substantial loss of skill in seasonal rainfall when
using persisted SSTs to force the GCM, as compared to
using actual observed SSTs. For GHA, using Septem-

FIG. 11. Comparison of NDVI prediction skill over Kenya. Skill
levels obtained by using cross-validated statistical models with
predictors derived from GCM output. The output is from forecast
experiments with persisted SST anomalies (psst) and simulation
experiments with observed SST (osst). The figure shows the per-
centage number of grid points (within the domain enclosed by
Kenya: 5°S–5°N, 33°–43°E) exceeding a given threshold value of
correlation skill.
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ber SSTAs still permits reasonable skill levels for OND
rainfall. Furthermore, Goddard and Mason (2002) have
shown that by using a system to forecast SSTs that in-
cludes the influence of the tropical Pacific on the Indian
Ocean at this time of the year, could result in even
better forecast skill for the GHA. Thus, GCM results
obtained from persisted SST forcing could be consid-
ered a “lower limit.”

The other climate factor that has been associated
with RVF spread is related to the wind speed and di-
rection. Mosquitoes may be transported by wind to re-
mote areas away from the breeding origin. Movement
of animals is also a factor that may influence the trans-
fer of the virus. Convection and local air currents may
be important vehicles for the transport of infected mos-
quitoes or other vectors of RVF during epizootics, and
this could produce local or distant extension from the
original foci of epizootics. It should be noted, for ex-
ample, that the RVF outbreak in Egypt in 1977 was
coincident with that in East Africa (Davies et al. 1985).
The use of output from high-resolution regional climate
models that simulate climate patterns in some of the
years when RVF outbreaks have occurred could pro-
vide deeper understanding of the prevailing climatic
conditions. Use of observational data could provide
better understanding on the statistics of the intrasea-
sonal weather. Statistics of intraseason weather (such as
dry spells, rainy spells, and wind patterns) may provide
the best predictors for NDVI or soil moisture and cir-
culation patterns that could affect virus transmission
within the region. We have demonstrated the capacity
to produce predictions for NDVI over Kenya for the
OND season. MAM is a period of lower predictability
of rainfall, and predictability of NDVI for that period is
yet to be established.

An increase in human population and the expansion
of agriculture is destroying some of the natural ecosys-
tems that support dambo mosquito-breeding sites. In
recent years many dambos have been extensively used
for agricultural purposes, where their higher water
table allows areas of successful cultivation in a gener-
ally drier ecotype. This could cause changes in NDVI
patterns and reduction in the dambo-breeding habitats
of the mosquitoes and hence RVF epizootics in the
region. The objective of the current work was to de-
velop a methodology of projecting NDVI in space and
time that could be used as a tool in applications sensi-
tive to NDVI variability. The established relationships
are strong enough to warrant applying the model in
near-real-time situations. For optimal operational pur-
poses, there is need to merge the system with ones using
monitored climate information such as observed rain-
fall. We are therefore exploring the same scheme using

observed pre-October rainfall amounts as additional
predictors to the GCM output. To form a basis for
real-time interventions by decision makers in the RVF
problem, a prediction system must be able to quantify
in a reliable way the areas of high risk for viral activity.
Quantifying the linkage between a variable like NDVI
and the risk of viral activity is therefore a further re-
quirement for application of the methods in this paper
to the RVF problem. RVF control efforts, which in-
clude the implementation of mosquito-control strate-
gies and livestock immunization, could then be more
confidently and effectively put in place. Work contin-
ues on ways of incorporating this model as a contribu-
tion to an operational early warning system for moni-
toring RVF over the GHA and the Middle East.

6. Conclusions

Statistical transformation procedures have been ap-
plied to the output from global climate model (GCM)
seasonal predictions, in order to derive prediction in-
formation that more closely matches the needs of a
societal problem. The methodology is based on the
premise that climate variability, and especially precipi-
tation, drive substantial variability in NDVI, which is a
key indicator for the management of a range of envi-
ronmentally related social problems. One such problem
that has been identified is livestock Rift Valley Fever
(RVF) and its effects on pastoral livelihoods both di-
rectly and through trade implications. Demonstration
of our ability to predict seasonal precipitation variabil-
ity with good skill, and then “downscale” it into high-
resolution NDVI information, suggests a reliable
scheme for predicting the risk of RVF outbreaks a few
months in advance is feasible across much of this re-
gion, at least to the extent that RVF is linked to NDVI.

NDVI is highly dependent on soil moisture condi-
tions, and precipitation fields from the GCM were ex-
pected to provide a good proxy. NDVI is also depen-
dent on other factors that include soil type, elevation,
etc., which may induce a varying responses of NDVI to
climate forcing. The approach of applying a statistical
transformation to the output of the GCM to fit it to
NDVI variability provides an empirical methodology
that factors in these complexities.

In the absence soil moisture data, NDVI has been
used to monitor RVF episodes over the GHA. We have
demonstrated from this study that NDVI can be skill-
fully predicted with a 2–3-month lead time using GCM
forecasts of regional rainfall and circulation patterns.
Our results show good skill for NDVI over most parts
of Kenya, decreasing in the highland areas.

Results were initially derived using GCM simulations
with observed SST. When the GCM is run mimicking a
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true operational forecast situation (i.e., using persisted
September SSTAs) skill declines only marginally as
shown in Fig. 11. For an NDVI index in northeast
Kenya, correlation skill falls marginally from 0.82 to
0.76. These results are based on a sample of 17 yr. The
climate predictability for the region has been demon-
strated over a much larger set of years and is considered
robust. It will be useful to extend the analysis with
NDVI over recent years to continue to increase the
robustness of this part of the forecast system.

Although RVF cases have been reported both over
the Kenya highlands as well as the lowlands, our analy-
sis has shown better NDVI predictive skill over the
lowlands, suggesting at this stage, higher confidence is
expected in predicting RVF outbreaks over the low-
lands of Kenya and Tanzania. These results provide
potentially useful information for factoring in the de-
tection and monitoring of suitable conditions for RVF
outbreaks, and developing strategies for mosquito con-
trol and disease prevention. An early warning system
could be tailored to provide guidance on the remedies
to be taken including vaccination of the animals, stabi-
lizing the movement of the animals, and mosquito con-
trol measures such as treating of the mosquito-breeding
dambos.

In addition to the possible contribution managing
RVF outbreaks, the demonstration of a capability to
predict NDVI using seasonal climate forecasts brings a
range of additional opportunities. The Famine Early
Warning System (FEWS), a project of the U.S. Agency
for International Development (USAID) and the Na-
tional Aeronautics and Space Administration (NASA)
routinely use Normalized Difference Vegetation Index
(NDVI) images to monitor environmental conditions
worldwide. Thus, other opportunities can be subsequently
pursued in areas where NDVI provides useful informa-
tion, such as in the prediction of livestock fodder.
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